

Cross Industry Demands and Collaboration Opportunities in OS for Safety Critical Systems

Philipp Ahmann, ETAS GmbH (BOSCH) Olivier Charrier, Wind River

Agenda

- Various Safety Integrity Standards
- Similarity and differences for standards.
- Resulting challenges for OSS
- ELISA Project introduction
- ELISA Deliverables
- ELISA Systems WG
- Education
- Role of documentation

Part1: Overview & Introduction

Part2: Initiatives and way forward

whoami - Philipp Ahmann

Sr. OSS Community Manager

Chair of the Technical Steering Committee Lead of the Systems Working Group

Member of the Inaugural Advisory Board

OSS enthusiast and promoter

whoami - Olivier Charrier

WNDRVR

Principal Technologist – Functional Safety

ELISA Ambassador

SAE / ARINC

Core Member of the APEX Subcommittee

OSS enthusiast

Part1: Overview & Introduction

Why Open Source Software

- Open Source for prototyping -> A way to certification is interesting.
- Innovation is done with open source as a first step.

Enables addressing industry constraints:

- Consolidation of control units
- Reduction of SWaP & Cabling (Space, weight, power & cabling) in the vehicle.
 - Time & Space partitioning

What is Functional Safety?

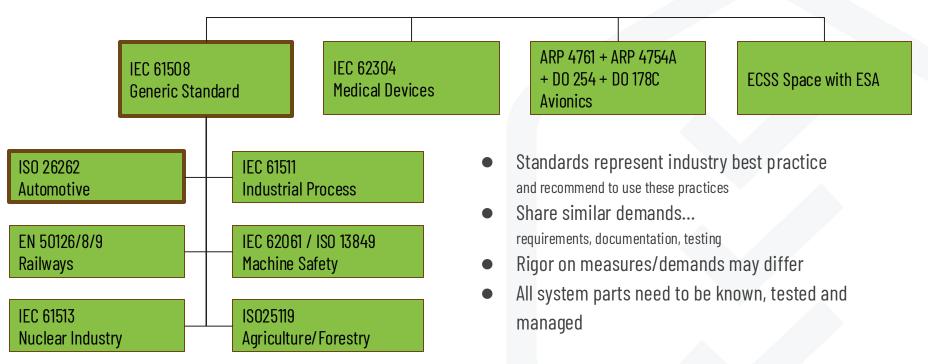
Definition of Safety

The freedom from unacceptable risk of physical injury or of damage to the health of people, either directly, or indirectly because of damage to property or the environment.

Definition of Functional Safety

The part of safety that depends on a system or equipment operating correctly in response to its inputs. Detecting potentially dangerous conditions, resulting either in the activation of a protective or corrective device or mechanism to prevent hazardous events or in providing mitigation measures to reduce the consequences of the hazardous event.

In Functional Safety you expect:


That the software:

- does behave as specified,
- does not interfere or impair other system components
- and all possible erroneous events are addressed somehow or somewhere.

And you have sufficient evidence to prove this.

Samples of safety (integrity) standards

Similarity and differences for standards.

- Similarities
 - Requirements based standards
 - Traceability has to be demonstrated between Requirements, Design and Tests
 - Failure modes have to be identified and either mitigated or documented
- Differences
 - Management of mixed criticality (Freedom of Interference versus Partitioning)
 - Tooling Qualification (need for a Qualified compiler or not, for example)

Community challenges for OSS projects introduced by standards

- How to map OSS project lifecycle and output to safety standards
 - Development process: Requirements, traceability, v-model,...
- Decision making in OSS project does not include safety standard concerns
 - O Different leadership models, roles, restrictions, lifecycle
 - Less influence on maintainers (e.g. forcing into deadline does not work!)
 - \odot \quad but quality is important on both sides
- Liability of a community? (while commercial provider may be liable insurance)
- Harder to train/direct developers
- Document the safe usage of OSS

Some OSS projects addressing functional safety gaps and concerns

Linux:

RTOS:

Virtualization/Hypervisor:

ELISA Project

- Enabling **Safety-critical applications** with **Linux** (beyond Security)
- Increase **dependability & reliability** for whole Linux ecosystem
- Various use cases: Aerospace, Automotive, Medical & Industrial
- Supported by major **industrial grade Linux distributors** known for mission critical operation and various industries representatives
- Close community collaboration with Xen, Zephyr, SPDX, Yocto & AGL projects
- Reproducible system creation from specification to testing
- SW elements, engineering processes, development tools

 \langle / \rangle

Processes

est of

Tools

\$

Work in Progress - License: CC-BY-4.0

Architecture

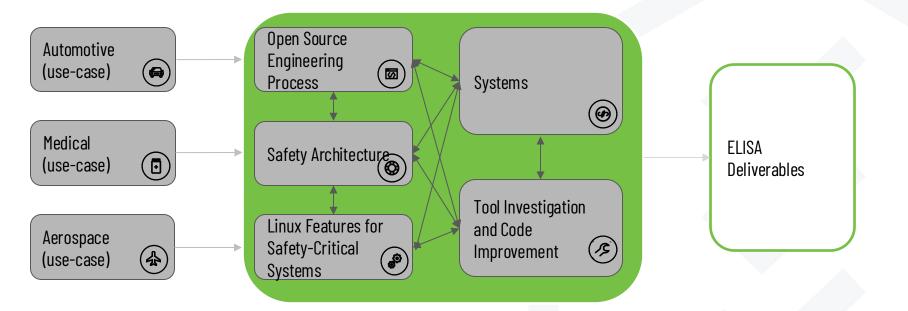
ELISA

Limitations! The OSS projects collaboration ...

- cannot engineer your system to be safe.
- cannot ensure that you know how to apply the described processes and methods.
- cannot create an out-of-tree system for safety-critical applications. (continuous process improvement argument!)
- cannot relieve you from your responsibilities, legal obligations and liabilities.

But...

Projects provide a path forward and peers to collaborate with!

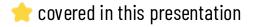

Premier Members

Work in Progress - License: CC-BY-4.0

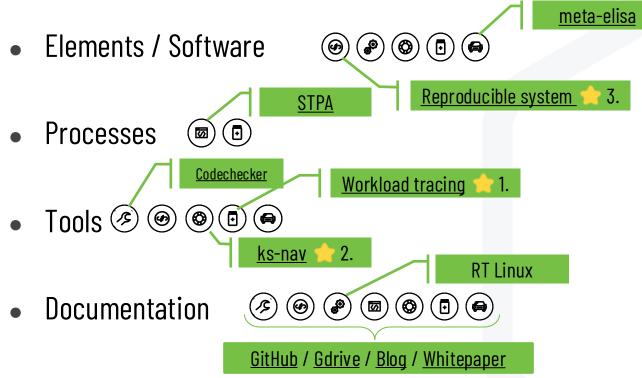
Different industries share the same core

Safety Critical Systems

"Assessing whether a system is safe, requires understanding the system sufficiently."


- Understand your system element within that system context and how it is used in that system.
- Select system components and features that can be evaluated for safety.
- Identify gaps that exist where more work is needed to evaluate safety sufficiently.
- Tools + Documentation help to understand complex systems better.

ELISA ease your path with tools and improved documentation



Part2: Initiatives and way forward

ELISA Working Groups - Deliverables

ELISA Working Groups - Deliverables

- Elements / Software 🛛 🐵 🐵 💿 👄
- Processes 🖾 🖻

Workload tracing

- Tools 🖉 🞯 🕲 🖨
- Documentation

 Image: I

Dynamic analysis: <u>Workload tracing</u> documentation mainline.

- Understanding system resource necessary to build and run a workload is important
- Linux tracing and strace can be used to discover the system resource in use by a workload
- Additional tools (like perf, stress-ng, paxtest) can help to analyze performance and security of the OS
- Credits to Shuah Khan & Shefali Sharma for bringing it mainline
 - /Documentation/admin-guide/workload-tracing.rst

	9	index : kernel/git/torvalds/linux.git				
GIT	-	Linux kernel source tree				
abo	out	summary refs log tree commit diff stats				
pat	th: r	oot/Documentation/admin-guide/workload-tracing.rst				
blo	blob: b2e254ec8ee846afe78eede74a825b51c6ab119b (plain)					
_	1 SPDX-License-Identifier: (GPL-2.0+ OR CC-BY-4.0)					
	2					
	4	Discovering Linux kernel subsystems used by a workload				
	5					
	6					
	7	:Authors: - Shuah Khan <skhan@linuxfoundation.org></skhan@linuxfoundation.org>				
	8	- Shefali Sharma <sshefali021@gmail.com></sshefali021@gmail.com>				
	9 10	<pre>:maintained-by: Shuah Khan <skhan@linuxfoundation.org></skhan@linuxfoundation.org></pre>				
	11	Key Points				
	12					
1	13					
	14	* Understanding system resources necessary to build and run a workload				
	15	is important.				
	16 17	* Linux tracing and strace can be used to discover the system resources in use by a workload. The completeness of the system usage information				
	18	depends on the completeness of coverage of a workload.				
	19	* Performance and security of the operating system can be analyzed with				
1	20	the help of tools such as:				
1	21	<pre>`perf <https: linux="" man-pages="" man1="" man7.org="" perf.1.html="">`_,</https:></pre>				
	22	<pre>`stress-ng <https: 1="" stress-ng="" www.mankier.com="">`_,</https:></pre>				
	23	<pre>`paxtest <https: github.com="" opntr="" paxtest-freebsd="">`</https:></pre>				
	24 25	* Once we discover and understand the workload needs, we can focus on them to avoid representations and use it to avaluate safety considerations.				
	25	to avoid regressions and use it to evaluate safety considerations.				
	27	Methodology				
	28					
	<u>aa </u>					

ELISA Working Groups - Deliverables

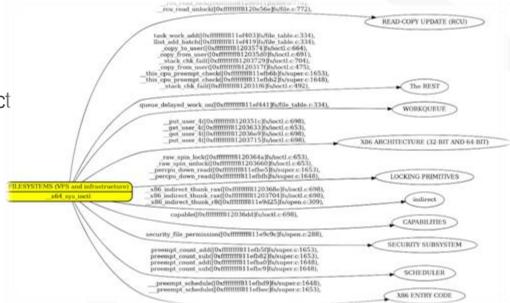

- Elements / Software 🛛 🐵 🐵 💿 👄
- Processes 🖾 🖻
- Documentation

 Image: I

Static analysis: e.g. by <u>ks-nav</u> (Kernel Static-Analysis Navigator)

- Supports the analysis on code/kernel level
- Graphical representation of source code
- Provides insights about the Kernel construct
- Discussion ongoing to upstream the tool inside Kernel ecosystem
- Credits to Alessandro Carminati & Maurizio Papini (both Red Hat)

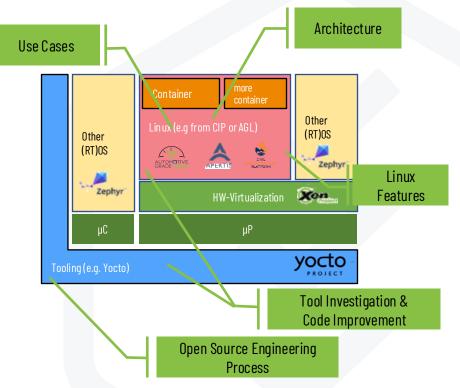
https://github.com/elisa-tech/ks-nav

ELISA Working Groups - Deliverables

• Elements / Software

Workload tracing

- Processes 🖾 🗊
- Tools
 Image: Second s
- Documentation


 Image: I

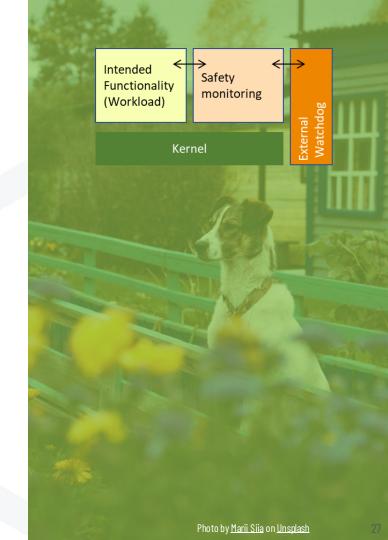
ELISA Working Groups - Fit in an exemplary <u>reproducible* systemn</u>

- Linux Features, Architecture and Code Improvements should be integrated into the reference system directly.
- **Tools** and **Engineering process** should serve the reproducible product creation.
- **Medical, Automotive, Aerospace** and future WG use cases should be able to strip down the reference system to their use case demands.


* reproducible: You can recreate the system yourself.

Typical concepts and approaches

Watchdog essential element in various concepts

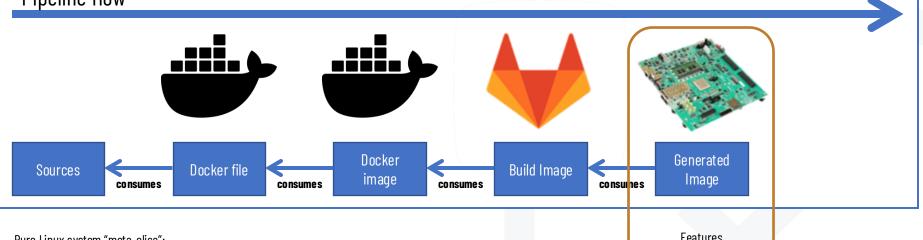

Work in Progress - License: CC-BY-4.0

External Watchdog

- The challenge-response watchdog serves as the "safety net" for the safety-critical workload
- The concept is widely used in Automotive and other industrial applications
 - It can be used as an iterative approach to assign more safety-critical functionality to Linux

With a proper system design the watchdog will never need to trigger the "safe state".

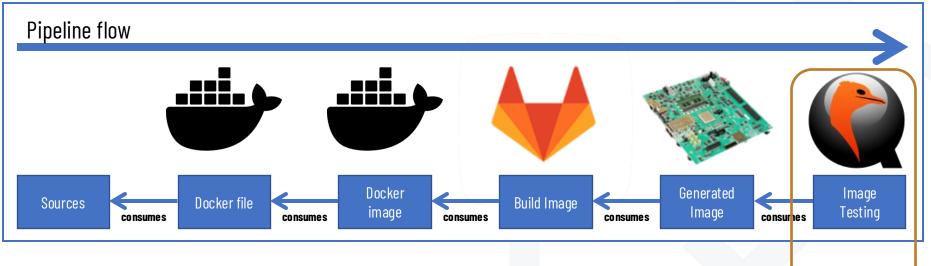
Standardized E-Gas Monitoring Concept for Gasoline and Diesel Engine Control Units

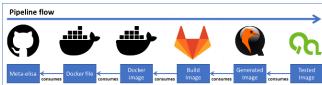

Hardware Demonstrator Setup - Xilinx ZCU102

- System elements available from scratch
 - Xen, Zephyr, Linux
 - \circ Good Xen support
- Documentation available in GitHub
 <u>https://github.com/elisa-tech/wg-systems/tree/main/Documentation/xen-demo-zcu102</u>
 Artifacta build in CitLab Cl
- Artifacts build in GitLab Cl <u>https://gitlab.com/elisa-tech/systems-wg-ci</u>(updated daily)
- Qemu derivative exists
- Example system prepared for individual use cases

Systems-WG-CI existing build

Pipeline flow


Pure Linux system "meta-elisa":

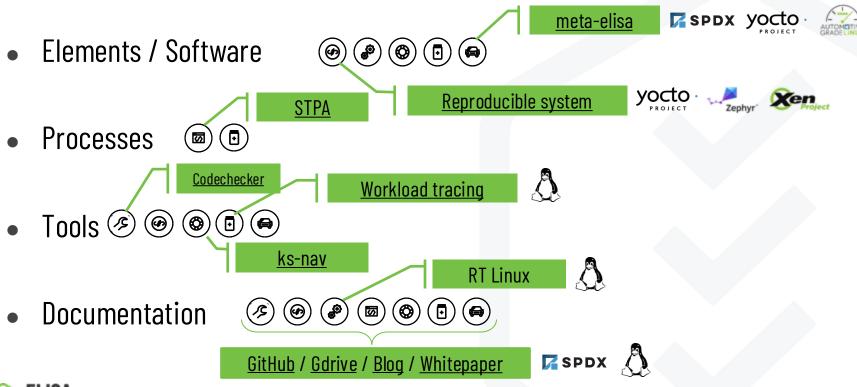

Features Availability Costs, Testing

Systems-WG-CI Enhancements (under development)

Pure Linux system "meta-elisa":

Qemu Boot test with HW images as CI job

Work in Progress - License: CC-BY-4.0


ELISA GitLab CI

- Different CI builds enabled
 - \circ ZCU102 build for Systems
 - meta-elisa-ci to enhance AGL demo for Automotive WG
 - Boeing minimal kernel example build into Aero WG CI
- Upcoming parts:
 - Minimal kernel configuration on ELISA level
 - SBOM generation for system elements (AGL SBOM already enabled)

لجان ال ال ال <th>+ 🌒 ビ</th> <th>elisa-tech elisa-tech elisa</th>	+ 🌒 ビ	elisa-tech elisa-tech elisa
Group		Subgroups and projects Shared projects Inactive
E elisa-tech		
🖋 Pinned	~	Search (3 character minimum)
Issues	0	🗅 🗛 Aero Wg Ci 🌐
Merge requests	1	
රීස Manage	>	O docker-image (1)
런 Plan	>	🕕 📙 Elisa Syzkaller 🕀
> Code	>	1 M medical-wg-ci (
ව Deploy	>	
Operate	>	M meta-elisa-ci (#)
		https://gittah.com/elisa-tech/

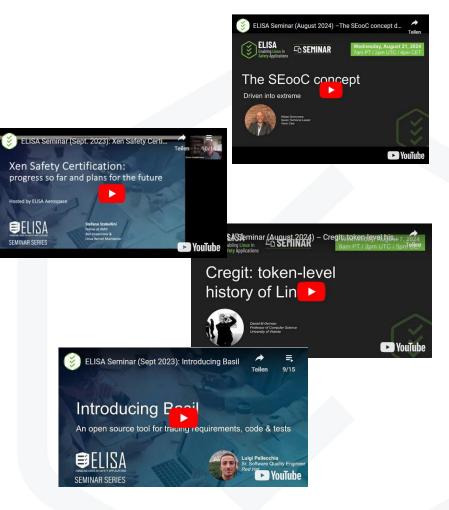
ELISA Working Groups - Deliverables

ELISA interactions across the communities

• Open source projects focusing on safety-critical analysis

• Open source projects with safety-critical relevance and comparable system architecture considerations

• Further community interactions


"If you have an apple and I have an apple and we exchange these apples then you and I will still each have one apple. But if you have an idea and I have an idea and we exchange these ideas, then each of us will have two ideas.

— George Bernard Shaw

Work in Progress - License: CC-BY-4.0

ELISA Seminar Series

- <u>https://elisa.tech/seminar-series/</u>
- Training & Awareness
- Inside ELISA & outside
- Linux (PREEMPT_RT, page table, ...)
- Safety process (SEooC, Automotive, Avionics, ...)
- Tools (BASIL, cregit, RTLA, ...)
- Communities (Xen, stress-ng, KernelCl, ...)

Summary: Documenting what is safe is key!

- Safe systems can only be achieved with sufficient understanding of the system and its parts.
- ELISA provides the tools, the processes and enhance documentation
 - \circ to be used by distributors of the Linux kernel
- Resulting documentation feeds into the safety manual.
 - \circ typically provided by a distributor of the Linux kernel (not ELISA \bigcirc)
- ELISA activities serve various industries **not** only safety-criticality systems.

- The discussion continues Friday afternoon at Linux Plumbers!
- Join the safe Systems with Linux MC (virtually, if you do not have a ticket yet. 📀)
- Details: <u>https://lpc.events/event/18/sessions/187</u>

15:00	Aspects of Dependable Linux Systems	Kate Stewart et al.			
	"Hall N2", Austria Center	15:00 - 15:15			
	Verifying the Conformance of a VirtIO Driver to the VirtIO Specification	Matias Vara Larsen			
	"Hall N2", Austria Center	15:15 - 15:45			
	ks-nav	Alessandro Carminati			
	"Hall N2", Austria Center	15:45 - 16:00			
16:00	Source-based code coverage of Linux kernel	Wentao Zhang et al.			
	"Hall N2", Austria Center	16:00 - 16:15			
	BASIL development roadmap	Luigi Pellecchia			
	"Hall N2", Austria Center	16:15 - 16:30			
	Break				
	"Hall N2", Austria Center	16:30 - 17:00			
17:00	Enabling tooling independent exchange of Requirements and other SW Engineering related information with the upcoming SPDX Safety Profile Nicole Pappler				
	Throwing Cinderblocks at Safety Engineering	Chuck Wolber			
	"Hall N2", Austria Center	17:25 - 17:50			
	Improving kernel design documentation and involving experts	Gabriele Paoloni			
18:00	"Hall N2", Austria Center	17:50 - 18:10			
	Discussion of Next Steps	Kate Stewart et al.			
	"Hall N2", Austria Center	18:10 - 18:30			

Time for questions & discussion!

Getting involved with ELISA

https://elisa.tech

https://github.com/elisa-tech

ک.

https://lists.elisa.tech

https://www.youtube.com/@elisaproject8453

Getting involved with Zephyr

https://www.zephyrproject.org

https://www.github.com/zephyrproject-rtos

https://lists.zephyrproject.org

https://chat.zephyrproject.org

Getting involved with Xen

https://www.xenproject.org

https://github.com/xen-project

ک.

https://xenproject.org/help/mailing-list/

https://xenproject.org/help/matrix/

